Deposition uniformity inspection in IC wafer surface
نویسندگان
چکیده
This paper focuses on the task of automatic visual inspection of color uniformity on the surface of integrated circuits (IC) wafers arising from the layering process. The oxide thickness uniformity within a given wafer with a desired target thickness is of great importance for modern semiconductor circuits with small oxide thickness. The non-uniform chemical vapor deposition (CVD) on a wafer surface will proceed to fail testing in Wafer Acceptance Test (WAT). Early detection of non-uniform deposition in a wafer surface can reduce material waste and improve production yields. The fastest and most low-priced inspection method is a machine vision-based inspection system. In this paper, the proposed visual inspection system is based on the color representations which were reflected from wafer surface. The regions of non-uniform deposition present different colors from the uniform background in a wafer surface. The proposed inspection technique first learns the color data via color space transformation from uniform deposition of normal wafer surfaces. The individual small region statistical comparison scheme then proceeds to the testing wafers. Experimental results show that the proposed method can effectively detect the non-uniform deposition regions on the wafer surface. The inspection time of the deposited wafers is quite compatible with the atmospheric pressure CVD time.
منابع مشابه
Uniformity Control in Planetary Chemical Vapor Deposition Reactor Systems
A simplified model of the spatially dependent deposition profile in chemical vapor deposition reactors with planetary wafer rotation is developed. The model focuses on reactors operated in “depletion” mode, a situation where the precursor species have undergone a sequence of gas-phase decomposition reactions leaving only the deposition species to diffuse to and react on the substrate surface, g...
متن کاملFull Wafer Mapping and Response Surface Modeling Techniques for thin Film Deposition Processes
Computational techniques for representing and analyzing full wafer metrology data are developed for chemical vapor deposition and other thin-film processing applications. Spatially resolved measurement data are used to produce “virtual wafers” that are subsequently used to create response surface models for predicting the full-wafer thickness, composition, or any other property profile as a fun...
متن کاملAn Investigation on Two Types of Crystalline Micro-diamond Film Coated Tools Lapping with Sapphire Wafer
Two types of micron-diamond films were prepared on YG6 substrate by hot filament chemical vapor deposition(HFCVD) method. Morphology and orientation of crystalline growth were evaluated by SEM and XRD. Diamond film coated tools and sapphire wafer’ surface before and after lapping experiment were contrasted. The results indicated that a significant change in Raman spectrum of two types of micro...
متن کاملDefect detection in multi-crystal solar cells using clustering with uniformity measures
Solar cells that convert sunlight into electrical energy are the main component of a solar power system. Quality inspection of solar cells ensures high energy conversion efficiency of the product. The surface of a multi-crystal solar wafer shows multiple crystal grains of random shapes and sizes. It creates an inhomogeneous texture in the surface, and makes the defect inspection task extremely ...
متن کاملa comparative study of reactor Designs for the Production of Graded films with applica - tions to combinatorial cVD
Segmented CVD reactor designs enabling spatial control of across-wafer gas phase composition were evaluated for depositing graded films suitable for combinatorial studies. Specifically two reactor designs were constructed and evaluated with experiments and response surface model (RSM) based analysis to quantify the reactor performance in terms of film thickness uniformity, sensitivity to adjust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013